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A common problem in simulations of MRI-experiments based on the numerical solution of the Bloch
equations is the finite number of isochromats used in the calculations. This usually results in false or spu-
rious signals and is a source of various differences between calculated and experimentally obtained data.
In this paper, we are proposing a technique representing each sample voxel by a central and three addi-
tional isochromats, slightly shifted in orthogonal directions from center, thus providing a linear approx-
imation of intra-voxel dephasing. This approach allows for further improvement and precision of the
calculated NMR signal and virtually avoids the problem related to an finite set of isochromats. Here
we provide details of the algorithm together with examples of simulations which prove the efficiency
of this approach.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction

There are numerous situations where computer simulations
have become a useful tool for studying various aspects of MR
experiments, pulse sequences and hardware configurations. One
of the most common and flexible categories of such simulators is
based on the discrete-iterative solution of the Bloch equations ap-
plied to the spin system [1]. This method allows one, in a simple
and convenient way, to investigate most phenomena occurring
during magnetic resonance imaging (MRI) experiments. However,
despite the flexibility of such models, the common problem with
this approach is the finite set of isochromats used in the calcula-
tion. This affects formation of the output data in the following
ways:

� the accuracy of the calculated signal from each volume element
depends on the number of isochromats used per spatial dimen-
sion in the simulation,

� simulated data generally have a discrete frequency spectrum as
the limited set of spins used in these calculation only contrib-
utes a certain number of frequencies to the signal,

� the discrete and regular location of the spins in simulations can
generate false signals caused by rephasing of the transverse
magnetization, e.g., by applying strong spoiler gradients.
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A number of different approaches to deal with this problem
have been suggested in the past. One possible way is to use multi-
ple isochromats in each volume element, which helps to obtain a
more realistic signal and, to some extend, the suppression of spu-
rious signal. It has been shown that to achieve an image recon-
struction error below 1.5% at least three isochromats per voxel
and spatial direction have to be used [2]. However, even with mul-
tiple spins per voxel, spurious signal could appear if the gradient
amplitude/duration exceeds certain limits. Therefore, the spin den-
sity distribution and/or appropriate isochromat spacing has to be
considered prior to simulation experiments [3,4]. The randomiza-
tion of spin–spin distances within the voxel could be used to sup-
press spurious rephasing as well [5], however, this method induces
additional stochastic noise into the simulated data [6].

As the intra-voxel dephasing (IVD) from main field inhomogene-
ities DB0, and imaging gradients strongly affects MRI signal forma-
tion, the incorporation of this phenomenon would provide a more
realistic simulation. In [7], the additional T�2 exponential weighting
of signal has been applied in order to reflect dephasing from DB0

inhomogeneities. However, this approach requires special treat-
ment of the time scale in order to generate proper spin-echo signal
formation by 180� refocusing pulses. Another approach assumes a
linear phase change across the voxel which determines the dephas-
ing slope for the phase of the neighboring isochromats, and finally,
integration of transverse magnetization is used to calculate the sig-
nal generated by each element [8]. An alternative approach is to cal-
culate intra-voxel dephasing iteratively using an analytical formula
for partial derivatives of the magnetization vectors [9].

In this work we are proposing a simple alternative approach to
estimate the intra-voxel dephasing in Bloch simulators from the
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mutual phase difference of closely placed pairs of isochromats [10].
The technique is relatively computational efficient as it requires
usage of only one extra isochromat for each spatial dimension con-
sidered in the simulation, and at the same time is resistive to the
generation of spurious echoes as the spacing of spins can be chosen
to be very small.
Fig. 1. Voxel representation used in the Bloch simulations. Three off-center
isochromats are used to monitor the evolution of intra-voxel dephasing. As the
mutual distance between central and off-center spins is very small (h = 10�9 m is
used in this paper) the accumulated phase differences can be kept within �p which
makes it easy to calculate intra-voxel dephasing.
2. Methods

2.1. Spin modeling

The typical approach exploited in most Bloch simulators in-
cludes the following steps:
� Construction of the discrete virtual object – a 1D, 2D or 3D

matrix, where each element holds information about a local phys-
ical property such as: spin density, relaxation constants T1 and T2,
DB0 field inhomogeneity, etc. Each voxel contains one or more
magnetization vectors as well. The matrix represents a real object,
which is assumed to consist of rectangular, homogeneous and
homogeneously excited voxels. It is the goal of the approach pre-
sented in the paper to improve the accuracy of the representation
of the rectangular voxel volume, which would normally be absent
in the pointwise representation.
� Numerical solution of the Bloch equation is applied for each

element of the virtual object. Calculations are performed step by
step following the evolution of experimental parameters such as
the radiofrequency field (RF) B1ðr; tÞ, the gradient field GðtÞ, and
in some cases dynamic properties, e.g., flow [11]. The evolution
of the magnetization vector Mðr; tÞ ¼ ðMx;My;MzÞT in the rotating
laboratory frame can be calculated from time instance ti to tiþ1 as:

Mðr; tiþ1Þ ¼ ERRotðB1ðr; tiÞ; ð0;0;GðtiÞ � rÞT ;
DB0ðrÞÞMðr; tiÞ þ E0 ð1Þ

where RRot is a rotation operator which can be found in the litera-
ture, e.g. [1,9,12]. The diagonal matrix E¼ diagðe�Dt=T2 ; e�Dt=T2 ;

e�Dt=T1 Þ and the column vector E0 ¼ ð0; 0;M0ð1� e�Dt=T1 ÞÞT introduce
the relaxation and M0 represents the initial magnetization in the
equilibrium state.
� The NMR signal of the sample, acquired at time instance ti, is

calculated by summation of the transverse components of magne-
tization vector over the all elements in the virtual object:

sðtiÞ ¼
X

r

ðMxðr; tiÞ þ jMyðr; tiÞÞ ð2Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

.

2.2. Tracking of intra-voxel dephasing

Although calculation of the output signal using Eq. (2) is simple
and straightforward in certain situations, output data are substan-
tially different from results obtained in real NMR experiments. Per-
haps the most obvious difference is related to the rephasing of false
transverse magnetization as a consequence of insufficient isochro-
mat spacing used in the simulation. When the model only contains
a single isochromat per voxel, the mutual phase difference be-
tween neighboring isochromats in a given spatial dimension is:

#n ¼ �jknjDrn n ¼ x; y; z ð3Þ

where jknj is distance of the k-space trajectory from the origin and
Drn represents the isochromat spacing. The phase difference #n is
repeating with cycle of 2p=Drn, which determines the replication
or modulation of the signal in k-space, calculated according to Eq.
(2). The desired image resolution dictates that signal is sampled
over the k-space span kn ¼ 2p=wn, where wn is the image voxel size.
In order to avoid image artifacts related to signal replication in k-
space, the following condition has to be fulfilled:

wn P Drn ð4Þ

Incorporation of IVD into signal calculations could significantly
suppress problems with rephasing of transverse magnetization and
at the same time improve the precision of signal estimation. How-
ever, in order to do so it is imperative to track exact IVD in time
during the evolution of isochromats. Here we are suggesting a sim-
ple solution for IVD monitoring, which could be used as an alterna-
tive to the analytically based method. The idea is to utilize extra
isochromats, one per used spatial dimension, and to position them
very close to the central isochromat as is shown in Fig. 1. Assuming
a linear approximation of the phase change within the voxel,
dephasing in each direction is then calculated as the phase differ-
ence between the central and the corresponding off-center iso-
chromat divided by their mutual distance:

u0n ¼
un �uc

h
; n ¼ x; y; z ð5Þ

where u0n represents a phase gradient, uc the central isochromat’s
phase, un the off-center isochromat’s phase in the corresponding
spatial dimension and h the distance between the central and the
off-center spins. The signal from the voxel affected by IVD can thus
be calculated by integration of the phase over the whole voxel vol-
ume [8,9,13]:

sðr; tiÞ ¼
Z Drx

2

�Drx
2

Z Dry
2

�Dry
2

Z Drz
2

�Drz
2

jMXYðr; tiÞjeiðu0xðr;tiÞxþu0yðr;tiÞyþu0zðr;tiÞzþucðr;tiÞÞdxdydz

¼ jMXY ðr; tiÞjeiucðr;tiÞsinc
Dr
2

u0xðr; tiÞ
� �

sinc
Dr
2

u0yðr; tiÞ
� �

� sinc
Dr
2

u0zðr; tiÞ
� �

ð6Þ

where the sinc function takes the un-normalized form of sinðxÞ=x.
As the three off-center isochromats serve the purpose to monitor
phase evolution only, their distance from the center isochromat
can be very small, and is in practice only limited by computational
accuracy of the computer’s double precision arithmetic. The close
isochromat spacing helps to keep the isochromat’s phase difference
within the �p range and makes the tracking of IVD possible, even
when very long gradient pulses or large DB0 field inhomogeneities
are applied. All simulations presented in this paper used the same
off-center isochromat distance of h = 10�9 m.



Fig. 2. Comparison of FID signals obtained from (A) analytical equation (signal is
shifted up to avoid overlap) and (B) Bloch simulation.
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3. Simulation results and discussion

The proposed IVD algorithm was implemented on a homemade
stand-alone Bloch simulator written in C/C++ in a Unix environ-
ment. All simulations were prepared by Matlab version 7.4 (The
MathWorks, Natick, MA, USA) program scripts, which generated
the input data such as the phantoms, the inhomogeneity maps,
and the pulse sequences. These were sent to the simulator for exe-
cution. After the simulation was finished, the Matlab script read
Fig. 3. Comparison of the echo signal from a voxel containing a single, central, isochroma
signal from 1000 uniformly distributed isochromats (B). The signals are almost identica
1000 isochromats set.
and processed the output data from the simulator and displayed
the results on the screen. The Matlab script measured the simula-
tion time from start to finish of the Bloch simulator run, i.e., the
overhead including preparing and processing the data was not in-
cluded. All simulations were performed on a 2.5 GHz dual core CPU
laptop computer running Windows/XP. The Cygwin emulator of
the Unix operating system was used to run the Bloch simulator
in the Windows/XP.

In the following, the input matrix size will refer to the dimen-
sions of the phantom voxel arrays used by the Bloch simulator to
generate NMR signal. The output matrix size will refer to the
dimensions of the sampled NMR signal, i.e., the k-space matrix
and/or reconstructed image.

3.1. FID simulations

Fig. 2 compares analytical and simulated magnitudes of the FID
signal from a 1D boxcar object of 0.5 mm length with a 36 mT/m
applied gradient field. The analytical signal was calculated using
Eq. (6) applied for a 1D object. In the simulation, only one voxel
was used containing a central and three off-center isochromats,
however, two of them had no effect on the signal formation as their
shifts were perpendicular to the applied gradient. Both data sets
demonstrate excellent agreement between theoretical and simu-
lated signal.

3.2. Voxel spectrum simulations

Frequency spectra from a 1D boxcar object were collected in
two different ways. The first calculation used a single center and
three offset isochromats, and included the IVD technique. The sec-
t using the IVD technique, i.e., three off-center additional isochromats (A), versus the
l and have a similar spectral width: 1340.5 Hz in case of IVD and 1342.8 Hz for the



Fig. 4. Simulated images obtained from a phantom containing four strips, shown on the left hand side, and the corresponding signal intensity profile, shown on the right hand
side. All simulations were performed with the same 256 � 256-output matrix resolution; however, there was difference in phantom matrix resolution and IVD application:
(A) 256 � 256 without IVD, (B) 16 � 16 with IVD, (C) 256 � 256 with IVD and (D) 16 � 16 without IVD. The output image (D) contains only discrete frequencies corresponding
to the position of the isochromats. The time required for simulation is indicated at bottom of each image.

Fig. 5. Examples of the gradient echo (A–C) and spin-echo sequences (D–F) and the corresponding excited signals. The signals generated without intra-voxel dephasing
exhibits false spurious echoes (B) and (E), which disappear when IVD dephasing is applied (C) and (F). The excitation profile is shown in (G).
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Fig. 6. Simulation of the echo trains (A) CPMG sequence, with echo time 100 ms
and (B) the multi-gradient echo sequence, with an echo time of 2 ms and a
alternating 100 mT/m gradient pulse. In the simulations, the echo formation and T�2
decay is generated by a single voxel using the IVD technique (four isochromats in
total) combined with a 0.5 mT/m linear field inhomogeneity applied across the
voxel in each spatial direction.
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ond calculation was performed on 1000 uniformly distributed iso-
chromats within the boxcar object of identical size. The results of
these calculations are shown in Fig. 3. The parameters used in both
simulations are as follows: gradient echo sequence with a 50 ls
hard pulse excitation, object size is 0.5 mm (1 voxel), gradient
amplitude 63 mT/m, sampling frequency 10 kHz and 1000 com-
plex points acquisition. The spectra are almost identical, with a fre-
quency bandwidth of 1340.5 Hz in case of IVD and 1342.8 Hz for
the multiple isochromats simulation, both measured as full width
at half maximum (FWHM) intensity. This is very close to a band-
width of 1343.586 Hz calculated from the gradient amplitude
and voxel size. IVD generates a uniform spectral distribution with
a frequency bandwidth modulated by the applied gradient field
along the corresponding direction.

In addition, IVD makes it possible to use a significantly smaller
number of isochromats, what is demonstrated on phantom which
contains four vertical strips of relative width 1, 2, 3 and 4 (see
Fig. 4). The image (A) was generated from the phantom of
256 � 256 input matrix size and without usage of IVD algorithm.
In the simulation of image (B), the phantom of 16 � 16-matrix size
with combination of IVD algorithm has been used. Both output
images have the same resolution of 256 � 256 pixels and appear
almost identical, though a closer look at the profile of image (B) re-
veals ringing artifact at the edges of the high-low intensities tran-
sitions. However, there was a significant (approximately 78 times)
reduction in the simulation time needed to generate image (B) due
the smaller number of isochromats used in the calculation. The rip-
ple artifact in IVD simulations could be suppressed choosing a
higher phantom resolution as demonstrated in image (C). The im-
age (C) used the same input and output matrix size of 256 � 256
voxels, however, for image (C) the computational time was approx-
imately 200 times longer. The simulation parameters for image (D)
were identical to those for experiment (B), with the exception of
the IVD application. The obtained image (D) reveals that the fre-
quency lines from the neighboring isochromats are separated from
each other. The simulation demonstrates it fails to meet require-
ments on resolution of the phantom model and the image, i.e., con-
dition given by Eq. (4). The previous examples demonstrate how
IVD modifies the voxel spectrum character, which now reminds
the user more of a spectrum obtained from the continuous spin
distribution rather than from the discrete isochromat grid. This
permits us to speed up the simulations using isochromat matrices
with a significantly smaller size as the simulated image resolution
and, at the same time, it avoids any severe spectral distortions.

3.3. Spurious signal suppression

Fig. 5 shows an example of the gradient echo (A) and spin-echo
(D) pulse sequence. Simulation parameters were as follows: 1D
phantom with a matrix size of 128 voxels, FOV = 50 mm, gradient
amplitude 20 mT/m, echo time 12 ms and 10 ls time steps. The re-
sults obtained without considering IVD contain three additional
spurious echoes shown in (B) and (E). These false signals can be
effectively suppressed using IVD, as is shown in (C) and (F).

3.4. Echo train simulations

Two echo train examples are presented: a multiple spin-echo,
i.e., Carr–Purcell–Meiboom–Gill (CPMG) and a multiple gradient
pulse sequence (see Fig. 6). In both simulations, an input phantom
with the following parameters has been used: single voxel with a
size of 5 mm in each dimension, T1 = 600 ms and T2 = 200 ms. The
IVD technique modulated the echo formation from the single voxel
using a 0.5 mT/m linear field inhomogeneity applied across the
voxel in each dimension. Note that the apparent T�2 modulation
of the echo amplitude in the multi-gradient echo experiment rep-
resents a modulation due to both IVD as well as a T2 relaxation
effect.
3.5. Truncation artifact

When applying IVD in Bloch simulations, it introduces a ringing
or so-called Gibbs artifact into the output images. This is especially
well visible when simulations are using lower output image reso-
lution. It might be considered a disadvantage using the IVD algo-
rithm and introducing such artifacts into the reconstructed data.
However, when comparing simulated with experimentally ob-
tained data, similar artifacts can be found there as well, as demon-
strated in Fig. 7. Both experimental (A) and IVD simulated images
(B) contain Gibbs artifacts, which tend to be much less visible in
higher resolution datasets. It should be noted that these artifacts
are not visible in simulations with a single isochromat per voxel
as is demonstrated by images in the bottom row (C). The behavior
and source of the Gibbs artifact is similar for both the experimental
results and the data simulated with IVD. The artifacts are more
pronounced when abrupt intensity changes are presented in the
object and for data sets with low k-space coverage [14]. We do
not see the Gibbs artifact in simulated images as a disadvantage
of the IVD method but as a specific feature of the model, able
to reproduce experimental performance limitations and
imperfections.



Fig. 7. Comparison of Gibbs artifacts in real and simulated images using different spatial resolutions (sample model and image have identical matrix size): 64 � 64 left,
128 � 128 middle and 256 � 256 right columns. The top row shows images of a water-filled phantom acquired on 11.7 T scanner. The middle and bottom row are simulated
images with and without using IVD, respectively. Although images without dephasing are perfectly smooth, the images with IVD have a much closer resemblance to the
experimental data. The time required for simulation is indicated at bottom of each simulated image.
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3.6. Inhomogeneity induced signal decay

In order to verify the effect of susceptibility on the simulation, we
compare simulated and experimentally obtained data from a 3 T
spectrometer using a cylindrical phantom containing an axially
placed air-filled tube. The phantom was positioned with its long axis
perpendicular to the static magnetic field B0. The field inhomogene-
ity through the phantom was calculated using a formula for the
phantom containing a glass tube (i.d. = 18.8 mm, o.d. = 22.8 mm)
according to [15]. The Bloch simulator used this field map to interpo-
late the inhomogeneity induced by the gradients through the voxel
[8]. The following parameters were used in both simulations and
experiments: gradient echo sequence with FOV = 120 mm,
128 � 128-matrix size, TE = 10, 15 and 25 ms, TR = 1000 ms, 90 Hz
bandwidth per pixel. The sample relaxation times were estimated
to be T1 = 1200 ms and T2 = 800 ms. Fig. 8 illustrates the impact of
field inhomogeneities on the output images with increasing echo
time. From the experimentally obtained images it is obvious that
the area of pixel intensity decay around the air-filled tube is increas-
ing with the usage of longer echo times. The intensity profiles
through the phantom center demonstrate that simulated data ob-
tained with IVD exhibit very good agreement with experiment. It
should be noted that, using only a single isochromat per voxel with-
out any account for IVD, the model is not capable to realistically sim-
ulate the effect of field perturbations and the results substantially
deviate from the experimentally obtained data. In [9] it was esti-
mated that in order to obtain reasonable simulation results, at least
eight isochromats per directions are necessary when the multiple
isochromats summation strategy is used. The previous results indi-
cate that usage of the IVD algorithm could be much more computa-
tionally efficient for the tracking of susceptibility-induced intra-
voxel dephasing compared to the summation of transverse magne-
tization from multiple voxels.

The presented IVD algorithm is assuming a linear approxima-
tion of the phase change over the voxel. As it was shown in previ-
ous examples, for many situations this simplification is reasonable
and the linear phase approximations leads to good results. How-
ever, when multiple selective excitations are used, the phase
change can substantially deviate from the linear assumption. In
such cases, the applicability of the method and/or special care for
simulation parameters such as spatial discretization of the sample
has to be considered prior to the simulations.



Fig. 8. Comparison of experimental and simulated gradient echo images with various echo times of 10, 15 and 25 ms from a cylindrical phantom containing an axially placed
air-filled tube: (A) row of experimental images from a 3 T scanner, (B) row of simulated images with IVD and (C) row of simulations without IVD. The profiles through the
phantom center (location marked by a vertical white dotted line) for data sets with TE = 25 ms are shown as well at the bottom of the figure. The typical simulation times are
indicated as well.
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4. Conclusion

The proposed intra-voxel dephasing method provides a simple
and efficient way to accurately simulate MR signal attenuation
for different experimental settings. The algorithm is based on the
calculation of differences in transverse orientations for spin pairs
in close proximity. Our simulation examples showed good agree-
ment with experimentally obtained data sets. The main character-
istics and benefits of the proposed method can be summarized as
follows:

� simple and straightforward implementation of IVD algorithm,
� it helps to suppress problems commonly encountered in simula-

tions using a limited number of isochromats, such as spurious
echoes and truncation artifacts,

� the spectral features of the signal generated with IVD resemble
that of a real sample with a large number of spins.

� the simulated data show a similar k-space span coverage behav-
ior as is typical in real experiments, i.e., reconstructed images
exhibit Gibbs artifacts and imperfections for which signal inten-
sities depend on the matrix size,

� it required only one extra isochromat for each considered
dimension, which makes the simulation relatively time efficient,

� it is applicable to the simulation of the effects of RF pulses and
gradient trains on the magnetization,

� it is capable to correctly and efficiently simulate the effect of
susceptibility induced field perturbations on experimentally
obtained images.
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